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Three-Dimensional Simulations of Compressible Mixing Layers:

Visualizations and Statistical Analysis

L.J. Leep,* J. C. Dutton,t and R. F. Burrt
University of lllinois at Urbana-Champaign, Urbana, Illinois 61801

The effects of compressibility on the planar mixing layer are investigated by means of visualization and statis-
tical analysis of the flowfield quantities computed using three-dimensional temporally evolving inviscid simula-
tions. The levels of compressibility studied range from relative Mach numbers of M, = 0.2-2.4. The objectives of
this research are to identify large-scale structures present in the mixing layer at different levels of compressibility
as well as to examine the statistical description of the flowfield, in order to gain understanding of the physical
entrainment and mixing processes. Three-dimensional simulation visualizations of both the passive scalar and
pressure fields show the nature of the large-scale structure present in the planar mixing layer to change from
nearly two dimensional and spanwise at low compressibility to highly three dimensional and oblique at increased
compressibility. Statistical analysis of the flowfield quantities shows that the shear layer width, Reynolds shear
stress, and transverse turbulence intensity decrease with increasing compressibility levels, whereas the stream-
wise turbulence intensity remains nearly constant and the spanwise turbulence intensity increases. These statis-
tics support the increasingly three-dimensional nature of the large-scale motion of the mixing layer with increas-

ing M,.

Nomenclature

=sound speed
= axial direction domain length or axial directional
difference operator
= transverse direction domain length or transverse
directional difference operator
= spanwise direction domain length or spanwise directional
difference operator
= convective Mach number [AU/(a,+a,)]
=relative Mach number [2AU/(a,+a,)]
= static pressure
= conservation form solution vector
= static temperature
= axial direction mean velocity
U  =shear layer streamwise mean velocity difference
= axial direction instantaneous velocity
= transverse direction instantaneous velocity
= spanwise direction instantaneous velocity
= axial direction coordinate
= transverse direction coordinate
= spanwise direction coordinate or mixture fraction
= axial wave number
= spanwise wave number
= angle of instability wave
=density
= turbulence intensity
<> =time or ensemble average
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Introduction and Background

HE compressible free shear layer is a fundamental flow type
that is currently of great research interest. These mixing layers
are central to many advanced hypersonic propulsion system de-
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signs, such as the supersonic combustion ramjet engine. Many re-
cent mixing layer studies examine compressibility effects as char-
acterized by the relative Mach number M, or convective Mach
number M. The convective Mach number can be interpreted as the
Mach number of the freestreams relative to a convective frame
moving with the large-scale structures; the relative Mach number
is based on the velocity difference across the mixing layer
M,=AUj/a and is twice the convective Mach number for
freestreams having equal specific heat ratios. These Mach numbers
have been shown to be effective for correlating trends observed in
compressible mixing layers in comparison to incompressible mix-
ing layers at the same freestream velocity and density ratios.'

Large-Structure Studies

Much research in recent years has focused on three-dimensional
studies of compressible shear layers in order to understand the
large-scale structure which governs this flow. This work has been
in both the experimental and computational arenas. Investigations
by Clemens,* Clemens and Mungal,” Messersmith,® and Messer-
smith et al.” used Mie scattering from condensed ethanol droplets
to reveal large-scale structures in compressible shear layers at re-
lative Mach numbers up to approximately 1.5. The large-scale
spanwise structures are most clear and coherent in the lower com-
pressibility flows, and plan views indicate that these structures are
two dimensional in nature. As the compressibility of the mixing
layer increases, plan views show an oblique orientation of the
large-scale structures, followed by a complete breakdown into
three dimensionality of the large-scale structures. Oblique or end
views shown in the flow visualizations of Refs. 6 and 7 and in
Refs. 4 and 5 show “jets” of unmixed fluid which seem to indicate
the presence of counter-rotating vortices in the streamwise direc-
tion at moderate compressibility levels. Visualizations by Clem-
ens* also show that the cross-sectional shape of the spanwise struc-
tures that are found in the compressible mixing layer are more
polygonal and elongated in nature than those found at low relative
Mach numbers which are nearly elliptic in shape. Rayleigh scatter-
ing results of Fourguette et al.® indicate an increased three dimen-
sionality with increasing compressibility. Elliott et al.® also used
Rayleigh scattering and showed the existence of large-scale struc-
tures with embedded smaller structure in a compressible mixing
layer at M, =1.72. Further evidence of the existence of turbulent
large-scale structure in compressible mixing layers was provided
by Elliott et al.'” who studied mixing layers at relative Mach num-
bers up to M, =1.72. They showed from pressure correlation mea-
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surements that large two-dimensional spanwise-oriented structures
dominate the mixing layer at low relative Mach numbers, tending
to become oblique with increasing relative Mach number.

A host of shear layer numerical simulations have been per-
formed recently, ranging from incompressible and two dimen-
sional to compressible and three dimensional in nature. Several re-
cent temporally and spatially evolving two-dimensional
simulations of compressible mixing layers!!~!*> were used to inves-
tigate inert shear layer stability and structure development. Large-
scale structures evolve from the initial shear layer instabilities.
These vortices continue to grow and eventually interact and pair.
The spanwise vortices observed in these two-dimensional com-
pressible mixing layer simulations tend to be somewhat rounded
but are more flat and elongated than their incompressible counter-
parts. Growth rate reduction with increasing compressibility was
also observed, which is in agreement with experimental findings.
Three-dimensional compressible mixing layer simulations have re-
cently been performed by Soetrisno et al.!> and Sandham and Rey-
nolds.!>'%17 At low compressibility, the structures present in the
mixing layer are similar to those found in incompressible cases:
dominant two-dimensional spanwise vortices with embedded
smaller scale streamwise counter-rotating vortices. These investi-
gators, however, note that the three-dimensional oblique instability
modes become increasingly important at higher relative Mach
numbers (M,>1.2). The orientation of the most amplified oblique
waves was found to follow the approximate relation M, cos0~1.2,
where 0 is the angle between the wave and the spanwise direction.
Sandham and Reynolds'>'7 identify three regimes that characterize
compressible mixing layer stability as a result of their three-di-
mensional direct numerical simulations and stability analyses: 1)
0<M,<1.2, in which the two-dimensional spanwise instability is
the most rapidly amplified; 2) 1.2<M,<2.0, in which the oblique
wave is the most amplified wave, although the two-dimensional
wave is still amplified and may have an effect; and 3) M,>2.0, in
which the two-dimensional instability is considerably less ampli-
fied than the most unstable oblique wave. The three-dimensional
nature of the compressible mixing layer was also suggested by the
results of Soetrisno et al.,’ Ragab and Sheen,'® and Tuncer and
Sankar,'” who have shown that the perturbation energy associated
with two-dimensional disturbances grows much slower than that
associated with three-dimensional disturbances in mixing layers
with a relative Mach number greater than 1.2.

Turbulence Statistics Studies

Many previous experimental studies of planar mixing layers
have involved the measurement of various turbulence quantities
within the fully developed region of the flow. Although several in-
vestigators have published data concerning incompressible mixing
layer turbulence statistics, sach information for compressible mix-
ing layers is much more limited. An extensive review of the litera-
ture concerning the turbulence statistics of planar, two-dimen-
sional, incompressible mixing layers has recently been compiled
by Gruber.?? The two-dimensional measurements of Elliott and
Samimy? and Samimy and Elliott?! show decreasing peak stream-
wise and transverse turbulence intensities and peak normalized
Reynolds shear stress with increasing relative Mach number. At
the highest compressibility level investigated, the streamwise and
transverse peak turbulence intensities were reduced by 30 and
35%, respectively, as compared to incompressible results.”>> The
normal stress anisotropy (c,/c,), however, remained roughly con-
stant since the peak streamwise and transverse turbulence intensi-
ties decreased at approximately the same rate with increasing com-
pressibility. Two-component laser Doppler velocimetry (LDV)
data gathered by Goebel and Dutton! and Goebel®® show that the
peak transverse turbulence intensity and normalized Reynolds
shear stress decrease with increasing compressibility in agreement
with Elliott and Samimy.? However, the streamwise turbulence in-
tensity was shown to remain relatively constant with increasing
relative Mach number. At the highest relative Mach number stud-
ied, the peak transverse turbulence intensity and normalized Rey-
nolds shear stress are reduced by 45 and 40%, respectively, over
the incompressible values although the streamwise turbulence in-

tensity shows no reduction. Thus, there is a substantial increase in
normal stress anisotropy with increasing compressibility. Three-
dimensional statistical data for a compressible mixing layer at
M, =1.59 have recently been published by Gruber.?’ This study
found that the peak streamwise and spanwise turbulence intensities
remain nearly constant as compared to the incompressible values,
whereas the peak transverse turbulence intensity and the peak nor-
malized Reynolds shear stress decrease with increasing relative
Mach number.

Most shear layer numerical simulations have focused on visual-
izations or stability analyses. Very few investigators have ex-
ploited the capability of the simulations to calculate the turbulence
statistics from the flow quantities computed. An exception is the
two-dimensional incompressible inviscid simulations of Chien et
al.2® who computed statistics associated with large-scale motion.
In these simulations, the peak transverse turbulence intensity was
found to be slightly greater than or nearly equal to the streamwise
turbulence intensity for the incompressible cases studied. Two-di-
mensional compressible simulations performed by Burr'* and Burr
and Dutton?’ attempted to capture the energy-containing activity
of the compressible shear layer. The statistical data computed from
the simulations show that the normal stress anisotropy ratio ¢,/c,
increases from approximately 1.5 for the incompressible case to
approximately 3.5 for the compressible case. The primary normal-
ized Reynolds shear stress and the shear layer growth rate were
shown to decrease with increasing compressibility.

Objectives

In an area where a plethora of research, both experimental and
numerical, has been performed, many aspects of this seemingly
simple shear flow still are unexplained and unexplored. The invis-
cid simulations presented here can be used to examine the physical
entrainment and mixing processes of compressible shear layers by
observing the large-scale structures and studying the statistics re-
lated to large-scale motion. These simulations examine the effects
of compressibility levels higher than those previously studied ex-
perimentally or numerically. An additional advantage of these sim-
ulation visualizations is the ability to examine, at relatively low
cost, a nearly infinite number of views of the flowfield. Pressure,
vorticity, and scalar fields can be visualized to aid in the under-
standing of the physical nature of this flow. The specific objectives
of the work presented herein are to 1) develop and validate a three-
dimensional mixing layer simulation code using a time-split sym-
metric explicit predictor-corrector total variational diminishing
(TVD) scheme, 2) compare the simulation results with recent ex-
perimental and computational results, 3) use the many views avail-
able from the simulation results to determine and explain the ef-
fects of compressibility on the large-scale structure of turbulent
mixing layers, and 4) determine the effects of compressibility on
the statistical quantities describing the behavior of a planar shear
layer.

Mathematical Model and Numerical Methodology

For the simulations presented herein, the govemning equations
are the time-dependent Euler equations and, for these nonreacting
simulations, the transport of a passive scalar (mixture fraction) is
also considered. Although viscous diffusion can be included, it
does not affect the basic inviscid instabilities responsible for the
larger scale motions that dominate the transport processes in com-
pressible mixing layers. Therefore, only implicit numerical diffu-
sion is included in the simulations presented here.

A schematic of the temporally evolving mixing layer geometry
is shown in Fig. 1. Temporally evolving shear layers are often
studied as a computationally more efficient alternative to spatially
evolving shear layers. Sigalla et al.®® discuss the correlation be-
tween temporal and spatial results for compressible shear layer
analysis. For the current three-dimensional simulations, a time-
split symmetric explicit predictor-corrector TVD code has been
developed. The time-step split scheme involves the sequential ap-
plication of the three directional difference operators (L,, Ly, L,)

g"*?=L,L,,L,, L, L, L,g" )
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Fig.1 Temporal shear layer schematic.

To ensure second-order time accuracy, the order of steps is sym-
metric. The equations are differenced in conservation form; to
avoid bias due to one-sided differencing, the direction of differenc-
ing is alternated. Thus, in a two-step cycle, the order of operator
application is reversed as well as the direction of differencing.
Each directional difference operator (L,, L,, L,) involves a series
of three steps: a predictor step p, a corrector step ¢, and a TVD step
t. The details of this numerical scheme can be found in Ref. 29.

Initial and Boundary Conditions

The temporally evolving shear layer simulations are initialized
with a hyperbolic tangent mean streamwise velocity profile and
zero mean transverse and spanwise velocities. All of the thermody-
namic properties (pressure, temperature, and density) are initial-
ized to uniform values. The mixture fraction is initialized with a
narrow hyperbolic tangent profile. Inlet and outlet as well as front
and back (z direction in Fig. 1) boundary conditions are treated as
periodic. Upper and lower (y direction) boundaries are treated as
free-slip walls and ensure that the mixing layer remains centered
throughout the calculation.

The three velocity components, temperature, pressure, and den-
sity, are- perturbed with small amplitude perturbations that corre-
spond to the most unstable waves from linear stability analysis, as
discussed in Ref. 29. The perturbation to each mean flow quantity
profile consists of four waves: a two-dimensional spanwise funda-
mental wave, a two-dimensional spanwise subharmonic wave, and
two equal and oppositely opposed oblique waves. The fundamen-
tal two-dimensional wave in this perturbation produces the insta-
bility which forms the spanwise rollers. The pairing of these vorti-
ces is induced by the subharmonic perturbation, which has a period
twice that of the fundamental perturbation. The phase angle be-
tween the fundamental and subharmonic modes is selected to be ©t/
2 to enhance pairing. The two equal and oppositely opposed ob-
lique waves perturb three-dimensional motion in the mixing layer,
thereby promoting the formation of counter-rotating streamwise
vortices.

For the low-compressibility cases discussed subsequently (M, =
0.2, M,=0.8), the two-dimensional wave is the most amplified
wave. Thus, the x-direction wave number o that provides maxi-
mum amplification of this fundamental wave determines the initial
conditions for this case. The oblique waves, although not as
strongly amplified at these Mach numbers as the two-dimensional
fundamental wave, are important since they perturb three-dimen-
sional motion. For the more compressible cases (M,=1.6,
M,=2.4), the oblique waves are the most amplified waves. Thus,
the x- and z-direction wave numbers (ot and {3) that provide maxi-
mum amplification of the oblique waves determine the initial con-
ditions for these cases. As previously mentioned, the orientation of
the oblique disturbances follows the approximate form
M, cos 6=~ 1.2. Although not dominant, the two-dimensional span-
wise waves are not negligible for these cases, since these waves
are still necessary to stimulate formation of the large two-dimen-
sional structures.

Code Validation and Grid Independence
To validate the three-dimensional aspects of the code, shock
tube test cases were run in the three coordinate directions. In the
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test case shock tube flow, a right-running normal shock wave and
an oppositely directed expansion fan are created due to the initial
pressure difference across a diaphragm. In addition, a contact dis-
continuity moves to the right at a lower velocity than the shock
wave. The computed results of the shock tube experiment are iden-
tical in all three coordinate directions and compare well with the
analytical solution. Further information regarding this validation
case can be found in Ref. 29.

All of the compressible mixing layer simulations were per-
formed using a 97 X 97 X97 Cartesian grid on a Cray Y-MP super-
computer. The simulation code used to produce the results pre-
sented herein runs at approximately 120 mflops. The CPU time
required to compute each simulation ranges from 2 to 4 h, with an
average computation rate of 400 time steps per hour. To show that
these calculations are grid independent, the M,=0.8 simulation
was performed on a reduced 65 X65 X 65 Cartesian grid, and select
averaged turbulence statistics were computed. The statistics deter-
mined using the results from the 65 X65 X635 grid were very simi-
lar to those from the 97 X97 X97 grid used for the bulk of the sim-
ulations. Thus, from the statistical data computed for the two
simulations run on different grids, it can be safely assumed that the
flowfields determined by these simulations are grid independent.

Results

The temporally evolving shear layer simulation code just de-
scribed has been used to examine the effects of compressibility on
the basic shear layer structure and statistical description. The cur-
rent inviscid simulations attempt to resolve only the large scales or
energy-containing motion, which tend to dominate the physics of
this turbulent compressible shear flow. Thus, information on dissi-
pation scale processes cannot be determined from the simulation
results. Nevertheless, this type of simulation is still of substantial
value for gaining insight into the physics and structure of turbulent
compressible mixing layers.

The four cases considered in this study are described in Table 1.
Case 1 is an incompressible case with a relative Mach number of
M,=0.2, and case 2 is a low-compressibility case with a relative
Mach number of M,=0.8. Cases 3 and 4 are compressible cases
having relative Mach numbers of M,=1.6 and 2.4, respectively.
These cases were selected to study the three regimes of stability
suggested by Sandham and Reynolds!>!'%!7 discussed earlier. It
should be noted that since the simulations are inviscid, the values
of the dimensional parameters in Table 1 are arbitrary.

The computational domain is shown in Fig. 1. The y-direction
domain length L, remains constant for all four simulation cases at
a value of 16.0. The x- and z-direction domain lengths change for
each case depending on the x- and z-direction wave numbers (0
and ) computed from stability analysis. These domain lengths are
of the form L, =4m/o and L, =47/B, respectively.

Visualizations of the temporally evolving shear layer simula-
tions are presented using gray scale maps of mixture fraction z and
pressure p to qualitatively understand the structure and physics of
the shear layer entrainment and mixing processes. The three-di-
mensional mixture fraction and pressure surface plots have the
same orientation as the computational domain shown in Fig. 1.
The statistical parameters are obtained by Favre averaging over an
x-z plane for multiple time frames. The time frames used for the
analysis of each case are evenly spaced in time and cover the same
portion of the shear layer evolution process. The statistical analysis
was performed between times when the shear layer has developed
into two distinct spanwise rollers and just before the two rollers
pair.

Table 1 Temporally evolving shear layer
simulation conditions

Case ¢ 2) 3) @
M, 0.2 0.8 1.6 2.4
AU, m/s 126 126 126 126
p;» keg/m3 0.35 0.35 0.35 0.35
T, K 1000 61.7 15.7 6.89
p;, kPa 100 6.17 1.57 0.689
a;, m/s 634 158 79 52,5
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Fig.2 Views of the mixture fraction field for the M, =0.8 mixing
layer at time plane number 300.

Fig.3 Constant pressure surface plot for the M, =0.8 mixing layer at
time plane number 390.

Visualizations

The visualizations of the incompressible M, =0.2 case are not
shown here because they closely resemble those of the M,=0.8
case. The low-compressibility case, M,=0.8, is in the regime
dominated by two-dimensional spanwise-oriented structures. The
length of the domain for the M, =0.8 simulation in the streamwise
and spanwise directions is L, =L,=15.40, and the length in the
transverse direction is L, = 16.0. Figure 2 shows mixture fraction
plots for the M, = 0.8 case. The rollups seen in the side view of Fig.
2 are very similar to those computed in two-dimensional low com-
pressibility simulations by Burr,'* Burr and Dutton,”” McMurtry et
al.’® and Sandham and Reynolds.!»!S They show the rounded
Brown-Roshko?! spanwise structures visualized by many experi-
mentalists in incompressible shear layers. As the simulations
progress in time, the two spanwise vortices interact and pair, form-
ing a single structure. Streamwise structures are also apparent at
this point in the temporal evolution; these mushroom-type struc-
tures form in the strained interfaces between the rollers. This type
of structure has been seen in several experimental studies of in-
compressible mixing layers; the most notable visualizations which
show this mushroom shape are the laser-induced fluorescence
(LIF) visualizations of Bernal and Roshko.>?

Visualizations of the pressure field have proven to be extremely
helpful in understanding the fundamental structure of the mixing
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layer. Low-pressure regions are associated with strong rotation
(i.e., vortex cores) which, in turn, identify the areas where the most
mixing occurs. A perspective view of a constant pressure surface
for the M, =0.8 case at a point in the evolution process where the
two original spanwise vortices have developed but have not yet
paired is shown in Fig. 3. This time plane is captured slightly after
the time plane used to show the mixture fraction field in Fig. 2.
The predominantly two-dimensional spanwise nature of the roll-
ers, which have periodic bends in the spanwise direction, is quite
clear. The pressure of the surface plotted is approximately 25%
above the pressure minimum. This surface plot is similar to that
shown by Sandham and Reynolds'*!7 for a low-compressibility
mixing layer.

The moderate-compressibility case, M,=1.6, is in the regime
where the three-dimensional oblique disturbances are more ampli-
fied than the two-dimensional spanwise disturbance, but amplifi-
cation of both types of disturbances is significant. Thus, at this rel-
ative Mach number the structures that develop are expected to
show increasing three dimensionality but also show large-scale
spanwise vortices. The length of the domain for the M, =1.6 simu-
lation in the streamwise and spanwise directions is L, =1, =24.21,
and the length in the transverse direction is L, = 16.0. Figure 4
shows one of the two large-scale spanwise structures in the side
view and two pairs of counter-rotating streamwise-oriented vorti-
ces in the end view. The large-scale spanwise structures shown in
the side view of Fig. 4 appear more polygonal in shape than the
corresponding low-compressibility structures, which are very el-
liptical or rounded. This observation is in agreement with the ex-
perimental visualizations of Clemens* who found polygonal struc-
tures at a relative Mach number of 1.58. The counter-rotating
streamwise vortices visible in the end view of Fig. 4 are present in
the braid region between the spanwise structures and wrap around
neighboring vortices. These structures are very similar to those
seen by Messersmith® in the oblique views of his Mie scattering

Fig.4 Views of the mixture fraction field for the M,.=1.6 mixing
layer at time plane number 300.

Fig.5 Views of the mixture fraction field for the M,=1.6 mixing
layer at time plane number 300.
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shear layer visualizations. The end view in Fig. 5 shows four pairs
of streamwise counter-rotating vortices. The four sets of counter-
rotating vortices consist of two sets of small vortices situated in the
top and bottom streams. The small streamwise vortices that are
seen in the top stream are those that have ridden up the back of the
spanwise structure and are near the top of the structure. The other
sets of streamwise counter-rotating vortices, which are in the lower
stream, are much farther apart (the two vortices that appear to-
gether are actually from two different pairs) than those in the top
stream and are vortices that start in the braid region near the saddle
point. The spacing of the streamwise vortices which constitute a
pair shows that the structures are oriented at an oblique angle to
the streamwise direction and ride up the back of the spanwise
structures. The larger structures seen in the middle of the shear
layer in the end view of Fig. 5, which appear to be streamwise
counter-rotating vortices, are formed by three-dimensional mixing
which occurs in the vortex cores but are not the counter-rotating
vortices that form ribs on the large-scale spanwise rollers. An in-
teresting phenomenon is captured by the side view scalar plot
shown in Fig. 5. At approximately z=L,/8, the spanwise large-
scale structures appear to be composed of two smaller substruc-
tures. This was not seen in the lower compressibility case. This
smaller scale composition could account for the more jagged na-
ture of the large-scale structures noted at higher relative Mach
numbser as observed by Messersmith® in his Mie scattering visual-
izations.

The nature of the low-pressure surfaces is again useful in under-
standing the underlying structure for this compressibility condi-
tion. The pressure plot presented in Fig. 6 shows a surface at ap-
proximately 30% above the pressure minimum for the case of
M, = 1.6. This time plane is taken at 150 steps after that shown in
Figs. 4 and 5. This pressure plot shows an increasingly three-di-
mensional structure compared to the predominantly two-dimen-
sional spanwise-oriented pressure surface plot shown in Fig. 3 for
M,=0.8. The oblique structures in Fig. 6 show a preferential ori-
entation of approximately *45 deg to the spanwise direction,
which is in agreement with stability theory. There is also seen in
this plot some reminiscence of the two-dimensional bent tubes
seen in the low-compressibility visualizations. The shape of these
pressure surfaces agrees well with those computed from the results

Fig.6 Constant pressure surface plot for the M, =1.6 mixing layer at
time plane number 450.

Fig.7 Views of the mixture fraction field for the M, = 2.4 mixing layer
at time plane number 300.

Fig.8 Views of the mixture fraction field for the M,=2.4 mixing
layer at time plane number 300.

Fig.9 Views of the mixture fraction field for the M, = 2.4 mixing layer

at time plane number 450.

of three-dimensional direct numerical simulations performed by
Sandham and Reynolds!? for a similar case.

The visualizations of the highest compressibility case consid-
ered here (M, =2.4) show several interesting results. This M,=2.4
case is in the regime where oblique disturbances are the only dis-
turbances which are significantly amplified. Thus, the structures
which develop are expected to be highly three dimensional. This
does not necessarily imply that large-scale structures will not be
present, but instead that these large-scale structures will not appear
as two-dimensional spanwise-oriented rollers as seen at lower
compressibility. The lengths of the domain for the M, = 2.4 simula-
tion in the streamwise and spanwise directions are L, =34.15 and
L,=19.72, and the length in the transverse direction is L, = 16.0.
Figure 7 shows somewhat spiked spanwise structures in the side
view and two pairs of distinct counter-rotating streamwise vortices
in the end view. A move forward in the z-direction by approxi-
mately L,/16 shows two smaller spanwise substructures which ap-
pear to form one larger and seemingly more squared off structure
(Fig. 8).

The visualization in Fig. 9 shows the structure in the M,=2.4
shear layer after it has developed further temporally than that seen
in Figs. 7 and 8. The large-scale spanwise structures now appear
quite jagged. Thus, the changes in the spanwise structure proceed
from elliptical rollers at low-compressibility conditions (M,=0.8)
to squared off and somewhat jagged structures at moderate com-
pressibility (M,=1.6) to very angular and jagged structures at high
compressibility (M,=2.4). The end view in Fig. 9 also shows thin
but long transverse spikes in place of the counter-rotating vortices
present in the earlier time frame (Fig. 7). As discussed earlier, sim-
ilar transverse “jets” have been visualized experimentally by Cle-
mens* and Messersmith.®

The constant pressure surface plot in Fig. 10 reinforces the dom-
inance of the oblique structure at M, =2.4. The surface plotted in
Fig. 10 is approximately 25% above the pressure minimum at this
time plane. This is approximately the same time plane used to
show the mixture fraction field in Figs. 7 and 8. There are no hints
of two-dimensional spanwise structure in this figure, but rather the
oblique tubes which form V-structures are clearly the dominant
structures. This pressure surface plot is similar to that shown by
Sandham and Reynolds'? for simulations at M,=2.1, although the
V structures are more pronounced in the pressure plot in Fig. 10
than in those by Sandham and Reynolds.!® This is most likely due
to the higher level of compressibility in the present simulations.
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Fig.10 Constant pressure surface plot for the M, = 2.4 mixing layer at
time plane number 290.
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Fig.11 Reynolds shear stress profile comparison.

Statistical Analysis

The mean axial velocity profiles for the four cases studied,
which were computed but are not shown here, are similar in shape
to the profiles of experimental data and show that the effect of
compressibility on the mean velocity profile shape is negligible.?
The shear layer width, which is considered here to be the distance
between the transverse locations at which U=U, —0.1AU and
U=U,+0.1AU, where U, and U, are the two freestream veloci-
ties, was shown to grow more slowly in time (and thus in space for
the spatially evolving case) as compressibility is increased. This
reduction in growth rate is directly related to the decrease in nor-
malized Reynolds shear stress with increasing compressibility.
Figure 11 shows the normalized Reynolds shear stress profiles,
—<puv>/p(AUY, for the four cases considered. The reduction of
mixing layer width and reduction in Reynolds shear stress (Fig.
11) with increasing compressibility are in agreement with recent
experimental data’32° and with the results of the two-dimensional
simulations of Burr and Dutton.?” In experimental results, the peak
magnitude as well as the lateral extent of the shear stress profile
both decrease with increasing compressibility. The two other nor-
malized Reynolds shear stresses, — <puw>/p(AU)? and —<pvw>/
p(AU)?, were also computed. As expected, they were both nearly
identically zero at all of the locations in the shear layer and at all
levels of compressibility and, therefore, are not shown graphically.

Figures 12-15 show turbulence intensity (Reynolds normal
stress) profiles, ¢,/AU, ¢,/AU, and o6, /AU, for the various cases
considered. By comparing the four plots, the normal stress anisot-
ropy ratio ¢,/c, can be seen to increase from approximately unity
(based on peak values of 6, and ,) for the lowest compressibility
case to nearly 1.6 for the highest compressibility case. Although
somewhat smaller in magnitude, this increase in the ¢,/G, anisot-
ropy with increasing compressibility is qualitatively in agreement
with the trend of the experimental data of Goebel and Dutton.! On
the other hand, the experiments of Elliott and Samimy® show a
nearly constant G, /o, anisotropy ratio. Also, in agreement with the
experimental data of Goebel and Dutton,! the increase in anisot-
ropy with increasing compressibility is due primarily to the de-

crease in transverse turbulence intensity ¢,/AU. The magnitude of
the streamwise turbulence intensity is shown to be nearly indepen-
dent of compressibility level at a value of approximately o,/
AU =0.20. This value is only slightly higher than the experimen-
tally observed constant streamwise turbulence intensity of Goebel
and Dutton' which is approximately 0.18. This is in excellent
agreement with the experiments since the small dissipation scale
motion is not considered in these simulations; thus, the value com-
puted from the present simulations is expected to be greater than
that for a real flow.

The growth of the spanwise turbulence intensity ¢, /AU with in-
creasing compressibility is also illustrated in Figs. 12-15. The
anisotropy ratio G,/0,, decreases substantially with increasing rela-
tive Mach number from approximately 1.6 to just below 1.0 prima-
rily due to the increase in ©,,/AU with increasing compressibility.
This growth in the spanwise component with increasing compress-
ibility agrees with visualizations that show the nature of the large-
scale structures in the shear layer to become more three dimen-
sional. The energy in the transverse component is redistributed to
the spanwise component via pressure strain.?® This result, how-
ever, disagrees with the experimental data of Gruber?® who found
the anisotropy ratio of G,/c, to remain nearly constant over a
range of compressibilities up to M, = 1.6. Except for the small cen-
tral peak in the spanwise turbulence intensity profile, the simula-
tion results in Fig. 14 for M,= 1.6 agree extremely well qualita-
tively with the trends of Gruber’s® data, showing ©,/AU having
the largest magnitude and 6,/AU the smallest magnitude with G,/
AU having an intermediate value. The relatively low values of ¢,/
AU in the two low-compressibility simulations (M,=0.2 and
M,=0.8) may be due to the lack of development of the three-di-
mensional structures at the point in the evolution process when the
statistics are computed (i.e., using several time planes spanning the
time between development of the two spanwise rollers to a point
Jjust before pairing). Thus, the spanwise direction statistics may not
accurately represent an actual spatially evolving shear layer for the
two low-compressibility cases. The trends, however, provide use-
ful information. The nearly constant peak spanwise turbulence in-
tensity for the two more compressible cases (M, = 1.6 and 2.4) may
indeed be correct since the three-dimensional structures develop

0.25 T T T T T
3 0.2 — _
& : ]
= 0.15 :— *:
3 : ]
S org 7
3 z
0.05 3
0 2 ]
-1.5 -1 -0.5 0 0.5 1 1.5 2

n=y/hb
Fig.12 M, =0.2 turbulence intensities.

0.25 r T T T T T T
r P b
5 02 SN e o B
2 F -0 ]
> E w ]
;. 0.15 :— b
2 r ]
= g ]
;, 01 | -
S b %
0.05 E , \ 3
[ _ -~ S-o ]
o C T 1 i ! I b
-1.5 -1 -0.5 0 0.5 1 1.5 2

n=y/o

Fig.13 M, =0.8 turbulence intensities.



LEEP, DUTTON, AND BURR: COMPRESSIBLE MIXING LAYERS 2045

0.25 T T T T T T p
i o | 1
02 + x| a |
D I —— A B
% L Gw B!
© r 4
= 0.15 - .
& r :
°© o1 f ]
2 [ ]
~ L ]
° o005 F ‘ ]
Er- V4 ~ f. . 4
BT <2 ]
o BT | I 1 I 1 1
-1.5 -1 -0.5 0 0.5 1 1.5 2
n=y/
Fig.14 M,=1.6 turbulence intensities.
025 T T T T T T ]
[ o} ]
2 02 r oo~ | ol
3, C T
o 015 | .
=2 C ]
g o
S o1 | i
= r ]
© o005 | 4
o ]
-1.5 -1 -0.5 0 0.5 1 1.5 2
n=y/b
Fig.15 M, =2.4 turbulence intensities.
025 T T T T 0.025
02 0.02
g £
2 t o
2 0.15 | 0015 &
= L @
I 5
3 olp -7 —e— G /AU H 001 B
E Py --®--0 /AU g
0.05 [— -+ — o /AU 4 0005 °
3 T _cuv> AUy
0 . 0
0 0.5 1 M 1.5 2 2.5

Fig.16 Peak turbulence intensities and Reynolds shear stresses.

early in the simulations for these cases. Thus, it can be theorized
from both the experimental and simulation results available that
the spanwise turbulence intensity may increase only slightly with
increased levels of compressibility. At this time, however, no ex-
perimental data are available with which to compare the computed
results for the M, =2.4 case.

A summary of the turbulence intensity dependence on relative
Mach number, as well as the Reynolds shear stress results, is pre-
sented in Fig. 16. The relatively constant streamwise turbulence
intensity is shown in contrast to the decreasing and increasing
transverse and spanwise turbulence intensities, respectively. These
statistical results for the turbulence intensities are clearly in good
agreement with the visualizations presented earlier that show a
shift from rounded, spanwise-oriented structures at low-compress-
ibility to more angular, flattened, and obliquely oriented structures
at higher compressibility. The normalized Reynolds shear stress
decreases in the same manner as the transverse turbulence inten-
sity as relative Mach number increases. This trend is identical to
the one found experimentally by Goebel and Dutton.! These
results demonstrate that a primary effect of compressibility is to
suppress the transverse velocity fluctuations.

Reference 29 discusses several additional statistical quantities
for which space is not available in the present paper. These include
the velocity correlation coefficient, passive scalar mean and stan-
dard deviation, normal stress production, and pressure-dilatation
and pressure-strain terms.

Conclusions

The explicit three-dimensional time-split predictor-corrector
TVD code developed herein was found to accurately and robustly
simulate inert shear layers over a range of compressibility levels.
Visualizations of a passive scalar for two of the cases (M,=0.8
and 1.6) have been compared to and found to agree with several
observations from previous experimental results and with other
numerical simulations. Pressure field visualizations at the various
compressibility levels considered also concur with those obtained
from numerical simulations performed by other researchers. The
flowfield quantities computed from three-dimensional temporally
evolving numerical simulations have been statistically analyzed to
further investigate the effects of compressibility on mixing layer
behavior. The M,=2.4 case represents an extension to a higher
compressibility level than examined in previous numerical or ex-
perimental work.

Several of the more important conclusions that may be drawn
from the results of the present compressible mixing layer visual-
ization and statistical studies are as follows:

1) The cross-sectional shape of the large-scale, spanwise struc-
tures changes with increasing compressibility; the structures are
rounded and elliptical at low-compressibility conditions, becoming
increasingly polygonal and angular in shape at increased levels of
compressibility.

2) The spanwise large-scale structures present in the moderate-
to high-compressibility cases appear to be composed of two
smaller substructures that cause the jagged nature observed experi-
mentally.

3) Constant pressure surface plots reveal the underlying struc-
ture of the compressible shear layer to be highly two dimensional
and spanwise oriented at low compressibility and increasingly
three dimensional and obliquely oriented at higher compressibility.

4) The normalized Reynolds shear stress and the normalized
mixing layer growth rate decrease with increasing compressibility.

5) The peak streamwise turbulence intensity ¢,/AU remains at
a relatively constant value over a wide range of compressibility.

6) The peak transverse turbulence intensity ©,/AU decreases
with increasing compressibility causing the normal stress anisot-
ropy ratio G, /6, to increase with compressibility.

7) The peak spanwise turbulence intensity 6,/AU increases
(perhaps only modestly) with compressibility causing the anisot-
ropy ratio 6,/6,, to decrease with increasing compressibility.

8) A primary effect of compressibility on the shear layer is to
suppress transverse velocity fluctuations which is implied by the
reduction in both the normalized Reynolds shear stress and the
peak transverse turbulence intensity.
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